Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
The same method can also be illustrated with a Venn diagram as follows, with the prime factorization of each of the two numbers demonstrated in each circle and all factors they share in common in the intersection. The lcm then can be found by multiplying all of the prime numbers in the diagram. Here is an example: 48 = 2 × 2 × 2 × 2 × 3,
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.
Intersection is written using the symbol "" between the terms; that is, in infix notation.For example: {,,} {,,} = {,} {,,} {,,} = = {: =} = {} The intersection of ...
Information diagrams have also been applied to specific problems such as for displaying the information theoretic similarity between sets of ontological terms. [ 3 ] Venn diagram showing additive and subtractive relationships among various information measures associated with correlated variables X and Y .
The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of the 20th century. [44] The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult ...
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2]