enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    Based on these RNN-based architectures, Baidu launched the "first large-scale NMT system" [23]: 144 in 2015, followed by Google Neural Machine Translation in 2016. [23]: 144 [24] From that year on, neural models also became the prevailing choice in the main machine translation conference Workshop on Statistical Machine Translation. [25]

  3. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  4. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  5. Google Neural Machine Translation - Wikipedia

    en.wikipedia.org/wiki/Google_Neural_Machine...

    Google Neural Machine Translation (GNMT) was a neural machine translation (NMT) system developed by Google and introduced in November 2016 that used an artificial neural network to increase fluency and accuracy in Google Translate.

  6. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector would be unable to carry enough information for accurate decoding.

  7. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Despite this, GPT-2 achieved 5 BLEU on the WMT-14 English-to-French test set (slightly below the score of a translation via word-for-word substitution). It was also able to outperform several contemporary (2017) unsupervised machine translation baselines on the French-to-English test set, where GPT-2 achieved 11.5 BLEU.

  8. Machine translation - Wikipedia

    en.wikipedia.org/wiki/Machine_translation

    Machine translation is use of computational techniques to translate text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. Early approaches were mostly rule-based or statistical. These methods have since been superseded by neural machine translation [1] and large language models ...

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba LLM represents a significant potential shift in large language model architecture, offering faster, more efficient, and scalable models [citation needed]. Applications include language translation, content generation, long-form text analysis, audio, and speech processing [citation needed