enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polymer characterization - Wikipedia

    en.wikipedia.org/wiki/Polymer_characterization

    Some of the most common microscopy techniques used are X-ray diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy. Polymer morphology on a mesoscale (nanometers to micrometers) is particularly important for the mechanical properties of many materials.

  3. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    X-ray microscopy is three-dimensional and non-destructive, allowing for repeated imaging of the same sample for in situ or 4D studies, and providing the ability to "see inside" the sample being studied before sacrificing it to higher resolution techniques. A 3D X-ray microscope uses the technique of computed tomography , rotating the sample 360 ...

  4. Energy-dispersive X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Energy-dispersive_X-ray...

    Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS), sometimes called energy dispersive X-ray analysis (EDXA or EDAX) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on an interaction of some source of X-ray excitation and ...

  5. Characterization (materials science) - Wikipedia

    en.wikipedia.org/wiki/Characterization...

    Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Some common examples of microscopy techniques include: Optical ...

  6. Polarized light microscopy - Wikipedia

    en.wikipedia.org/wiki/Polarized_light_microscopy

    Simple techniques include illumination of the sample with polarized light. Directly transmitted light can, optionally, be blocked with a polariser oriented at 90 degrees to the illumination. More complex microscopy techniques which take advantage of polarized light include differential interference contrast microscopy and interference ...

  7. High-resolution transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/High-resolution...

    High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. [ 1 ] [ 2 ] It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp 2 -bonded carbon (e.g ...

  8. Crystallography - Wikipedia

    en.wikipedia.org/wiki/Crystallography

    Advancements in crystallographic techniques, such as electron diffraction and X-ray crystallography, continue to expand our understanding of material behavior at the atomic level. In another example, iron transforms from a body-centered cubic (bcc) structure called ferrite to a face-centered cubic (fcc) structure called austenite when it is ...

  9. Immunofluorescence - Wikipedia

    en.wikipedia.org/wiki/Immunofluorescence

    Immunofluorescence (IF) is a light microscopy-based technique that allows detection and localization of a wide variety of target biomolecules within a cell or tissue at a quantitative level. The technique utilizes the binding specificity of antibodies and antigens. [1] The specific region an antibody recognizes on an antigen is called an ...