enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  3. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...

  4. Static spacetime - Wikipedia

    en.wikipedia.org/wiki/Static_spacetime

    Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds . Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R × {\displaystyle \times } S with a metric of the form

  5. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime ...

  6. Light cone - Wikipedia

    en.wikipedia.org/wiki/Light_cone

    The purple (dashed) line shows the path of a photon emitted from the surface of a collapsing star. The green (dot-dash) line shows the path of another photon shining at the singularity. In flat spacetime, the future light cone of an event is the boundary of its causal future and its past light cone is the boundary of its causal past.

  7. Tests of special relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_special_relativity

    However, when other experiments that exclude the Galilean-invariant theories are considered (i.e. the Ives–Stilwell experiment, various refutations of emission theories and refutations of complete aether dragging), Lorentz-invariant theories and thus special relativity are the only theories that remain viable.

  8. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy , as expressed in the mass–energy equivalence formula ⁠ E = m c 2 {\displaystyle E=mc^{2}} ⁠ , where c {\displaystyle ...

  9. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.