Search results
Results from the WOW.Com Content Network
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)".
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −118.910 kJ/mol Standard molar entropy, S o liquid: 171.0 J/(mol K) Heat capacity, c p: 98.36 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −104.7 kJ/mol Standard molar entropy, S o gas: 269.91 J/(mol K) Enthalpy of ...
battery, Hydrogen closed cycle H fuel cell [17] 1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation needed] 1: battery, Lithium–Manganese [19] [20] 0.83-1.01: 1.98-2. ...
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately. Blue type items have an article available by ...
The table below gives thermodynamic data of liquid CO 2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0 °C temperature and 3483 kPa pressure.
Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −112. kJ/mol [8] Standard molar entropy, S o liquid: 171.9 J/(mol·K) [8] Enthalpy of combustion, Δ c H o liquid: −709 kJ/mol Heat capacity, c p: 106.6 J/(mol·K) [8] Gas properties Std enthalpy change of formation, Δ f H o gas: −80.8 kJ ...
Heat capacity c p? J/(mol K) Liquid properties Std enthalpy change of formation Δ f H o liquid: −483.5 kJ/mol Standard molar entropy S o liquid: 158.0 J/(mol K) Enthalpy of combustion, Δ c H o –876.1 kJ/mol Heat capacity c p: 123.1 J/(mol K) Gas properties Std enthalpy change of formation Δ f H o gas –438.1 kJ/mol Standard molar ...