Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Consequently, when Newton's second law is applied to an infinitesimal portion of fluid, the acceleration has two terms, a combination known as a total or material derivative. The mass of an infinitesimal portion depends upon the fluid density , and there is a net force upon it if the fluid pressure varies from one side of it to another.
Consider Newton's second law, = where F is the sum of forces on the object, m is mass, and a is the acceleration. Newton's equation can be applied to the tangential axis only. This is because only changes in speed are of concern and the bob is forced to stay in a circular path.
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...
The equation of motion for a particle of constant mass m is Newton's second law of 1687, in modern vector notation =, where a is its acceleration and F the resultant force acting on it. Where the mass is varying, the equation needs to be generalised to take the time derivative of the momentum.
i.e. they take the form of Newton's second law applied to a single particle with the unit mass =.. Definition.The equations are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system.
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
In Newtonian mechanics, for one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, can be obtained by means of Newton's second law and Hooke's law for a mass on a spring.