Search results
Results from the WOW.Com Content Network
Geometric intuition for the integral of 1/x. The three integrals from 1 to 2, from 2 to 4, and from 4 to 8 are all equal. Each region is the previous region halved vertically and doubled horizontally. Extending this, the integral from 1 to 2 k is k times the integral from 1 to 2, just as ln 2 k = k ln 2.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
Expanding (x + y) n yields the sum of the 2 n products of the form e 1 e 2... e n where each e i is x or y. Rearranging factors shows that each product equals x n−k y k for some k between 0 and n. For a given k, the following are proved equal in succession: the number of terms equal to x n−k y k in the expansion
[1] The approximation can be proven several ways, and is closely related to the binomial theorem . By Bernoulli's inequality , the left-hand side of the approximation is greater than or equal to the right-hand side whenever x > − 1 {\displaystyle x>-1} and α ≥ 1 {\displaystyle \alpha \geq 1} .
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...
Signum function = . In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.
In elementary mathematics, the additive inverse is often referred to as the opposite number, [3] [4] or its negative. [5] The unary operation of arithmetic negation [6] is closely related to subtraction [7] and is important in solving algebraic equations. [8] Not all sets where addition is defined have an additive inverse, such as the natural ...