enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Derivation of the relativistic Doppler shift If an object emits a beam of light or radiation, the frequency, wavelength, and energy of that light or radiation will look different to a moving observer than to one at rest with respect to the emitter.

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  5. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    This implies the kinetic energy, in both Newtonian mechanics and relativity, is 'frame dependent', so that the amount of relativistic energy that an object is measured to have depends on the observer. The relativistic mass of an object is given by the relativistic energy divided by c 2. [10]

  6. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    Kinetic energy in special relativity and Newtonian mechanics. Relativistic kinetic energy increases to infinity when approaching the speed of light, thus no massive body can reach this speed. Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass.

  7. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Relativistic kinetic energy: The relativistic kinetic energy relation takes the slightly modified form: = = As is a function of , the non-relativistic limit gives / =, as expected from Newtonian considerations.

  8. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    In special relativity, four-momentum (also called momentum–energy or momenergy [1]) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions ; similarly four-momentum is a four-vector in spacetime .

  9. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    Due to kinetic energy and binding energy, this quantity is different from the sum of the rest masses of the particles of which the system is composed. Rest mass is not a conserved quantity in special relativity, unlike the situation in Newtonian physics.