Search results
Results from the WOW.Com Content Network
The X-ray absorption near-edge structure , introduced in 1980 and later in 1983 and also called NEXAFS (near-edge X-ray absorption fine structure), which are dominated by core transitions to quasi bound states (multiple scattering resonances) for photoelectrons with kinetic energy in the range from 10 to 150 eV above the chemical potential ...
X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected ...
Small-angle X-ray scattering (SAXS) probes structure in the nanometer to micrometer range by measuring scattering intensity at scattering angles 2θ close to 0°. X-ray reflectivity is an analytical technique for determining thickness, roughness, and density of single layer and multilayer thin films. Wide-angle X-ray scattering (WAXS), a ...
Since scattering increases the distance travelled by photons within tissue, the probability of photon absorption also increases. Because scattering has weak dependence on wavelength, the NIR window is primarily limited by the light absorption of blood at short wavelengths and water at long wavelengths. The technique using this window is called ...
In X-ray radiography the calculation of the mean free path is more complicated, because photons are not mono-energetic, but have some distribution of energies called a spectrum. As photons move through the target material, they are attenuated with probabilities depending on their energy, as a result their distribution changes in process called ...
One can further use the X-ray or neutron scattering data and fit separate domains (X-ray or NMR structures) into the "SAXS envelope". In a scattering experiment, a solution of macromolecules is exposed to X-rays (with wavelength λ typically around 0.15 nm) or thermal neutrons (λ≈0.5 nm).
Now CT X-ray scans of the coffin have thrown light on the wrappings that have helped preserve Lady Chenet-aa’s remains for more than 3,000 years.
Fig. 1: Schematic diagram of Compton's experiment. Compton scattering occurs in the graphite target on the left. The slit passes X-ray photons scattered at the selected angle and their average energy rate is measured using Bragg scattering from the crystal on the right in conjunction with an ionization chamber.