Search results
Results from the WOW.Com Content Network
The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...
Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...
Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model , especially when used to model contingency tables.
A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model . The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X , or more immediately, the transformed quantities f i ( X ...
The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:
RMM was initially developed as a series of extensions to the original inverse Box–Cox transformation: = (+) /, where y is a percentile of the modeled response, Y (the modeled random variable), z is the respective percentile of a normal variate and λ is the Box–Cox parameter.
Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...
Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...