Search results
Results from the WOW.Com Content Network
Symbolic circuit analysis is a formal technique of circuit analysis to calculate the behaviour or characteristic of an electric/electronic circuit with the independent variables (time or frequency), the dependent variables (voltages and currents), and (some or all of) the circuit elements represented by symbols. [1] [2]
The solution of the corresponding constitutive equation leads to a relaxation function of the Mittag-Leffler type. It is defined by the power series with negative arguments. This function represents all essential properties of the relaxation process under the influence of an arbitrary and continuous signal with a jump at the origin.
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
A small signal model consists of a small signal (having zero average value, for example a sinusoid, but any AC signal could be used) superimposed on a bias signal (or superimposed on a DC constant signal) such that the sum of the small signal plus the bias signal gives the total signal which is exactly equal to the original (large) signal to be ...
$3,150 (Commercial), $99 (Student Suite), $700 (Academic), $194 (Home) including price of MATLAB. Proprietary: Provides tools for solving and manipulating symbolic math expressions and performing variable-precision arithmetic. SymPy: Ondřej Čertík 2006 2007 1.13.2: 11 August 2024: Free modified BSD license: Python-based TI-Nspire CAS ...
The same oscillator phase plot, but with Liénard transform. The Van der Pol Oscillator simulated with the Brain Dynamics Toolbox [1] Evolution of the limit cycle in the phase plane. The limit cycle begins as a circle and, with varying μ, becomes increasingly sharp. An example of a relaxation oscillator.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
By choosing one or the other of the two results provided in either formula, one can always prevent the set of parameters in the result from violating the condition a k − b j ≠ 1, 2, 3, ... for k = 1, 2, ..., n and j = 1, 2, ..., m that is imposed by the definition of the G-function. Note that each pair of results becomes unequal in the case ...