enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.

  3. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.

  4. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    Under standard atmospheric conditions (25 °C and pressure of 1 bar), the dynamic viscosity of air is 18.5 μPa·s, roughly 50 times smaller than the viscosity of water at the same temperature. Except at very high pressure, the viscosity of air depends mostly on the temperature.

  5. Chapman–Enskog theory - Wikipedia

    en.wikipedia.org/wiki/Chapman–Enskog_theory

    A gas is said to be in local equilibrium if it satisfies this equation. [4] The assumption of local equilibrium leads directly to the Euler equations, which describe fluids without dissipation, i.e. with thermal conductivity and viscosity equal to . The primary goal of Chapman–Enskog theory is to systematically obtain generalizations of the ...

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    the fluid is assumed to be isotropic, as with gases and simple liquids, and consequently is an isotropic tensor; furthermore, since the deviatoric stress tensor is symmetric, by Helmholtz decomposition it can be expressed in terms of two scalar Lamé parameters, the second viscosity and the dynamic viscosity, as it is usual in linear elasticity:

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  8. Joback method - Wikipedia

    en.wikipedia.org/wiki/Joback_method

    The Joback method, often named Joback–Reid method, predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only. It is named after Kevin G. Joback in 1984 [1] and developed it further with Robert C. Reid. [2] The Joback method is an extension of the Lydersen method [3] and uses very similar groups, formulas, and parameters for the three ...

  9. Jones–Dole equation - Wikipedia

    en.wikipedia.org/wiki/Jones–Dole_equation

    B is a coefficient that characterises the solute–solvent interactions at a defined temperature and pressure, C is the solute concentration. The Jones–Dole B coefficient [ 3 ] is often used to classify ions as either structure-makers (kosmotropes) or structure-breakers ( chaotropes ) according to their supposed strengthening or weakening of ...