Search results
Results from the WOW.Com Content Network
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of
This problem is usually called the linear search problem and a search plan is called a trajectory. The linear search problem for a general probability distribution is unsolved. [ 5 ] However, there exists a dynamic programming algorithm that produces a solution for any discrete distribution [ 6 ] and also an approximate solution, for any ...
At the line search step (2.3), the algorithm may minimize h exactly, by solving ′ =, or approximately, by using one of the one-dimensional line-search methods mentioned above. It can also be solved loosely , by asking for a sufficient decrease in h that does not necessarily approximate the optimum.
An upper bound for a decision-tree model was given by Meyer auf der Heide [17] who showed that for every n there exists an O(n 4)-deep linear decision tree that solves the subset-sum problem with n items. Note that this does not imply any upper bound for an algorithm that should solve the problem for any given n.
Seidel (1991) gave an algorithm for low-dimensional linear programming that may be adapted to the LP-type problem framework. Seidel's algorithm takes as input the set S and a separate set X (initially empty) of elements known to belong to the optimal basis. It then considers the remaining elements one-by-one in a random order, performing ...
However, the criss-cross algorithm need not maintain feasibility, but can pivot rather from a feasible basis to an infeasible basis. The criss-cross algorithm does not have polynomial time-complexity for linear programming. Both algorithms visit all 2 D corners of a (perturbed) cube in dimension D, the Klee–Minty cube, in the worst case. [15 ...
An algorithm is said to be constant time (also written as () time) if the value of () (the complexity of the algorithm) is bounded by a value that does not depend on the size of the input. For example, accessing any single element in an array takes constant time as only one operation has to be performed to locate it.
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...