Search results
Results from the WOW.Com Content Network
Copiotrophs tend to have a lower carbon use efficiency than oligotrophs. [10] This is the ratio of carbon used for production of biomass per total carbon consumed by the organism. [ 10 ] Carbon use efficiency can be used to understand organisms lifestyles, whether they primarily create biomass or require carbon for maintenance energy.
Additionally, soil microbes contribute to the formation of stable soil organic matter through the synthesis of extracellular polymers, enzymes, and other biochemical compounds. [34] These substances help bind together soil particles, [35] forming aggregates that protect organic carbon from microbial decomposition and physical erosion. Over time ...
Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface.
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
Soil fertility and plant production: Use of enzyme activity as indicator of soil quality [71] [72] Composting. Impacts of composting municipal solid waste on soil microbial activity [10] Soil organic matter stability: Impact of temperature and soil respiration on enzymatic activity and its effect on soil fertility [73] Climate change indicators
Soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. Carbon is stored in the soil as organic matter and is respired by plants, bacteria, fungi and animals. When this respiration occurs below ground, it is considered soil respiration. Temperature, soil moisture and nitrogen all regulate ...
The darkened surfaces of biological soil crusts decreases soil albedo (a measure of the amount of light reflected off of the surface) compared to nearby soils, which increases the energy absorbed by the soil surface. Soils with well-developed biological soil crusts can be over 12 °C (22 °F) warmer than adjacent surfaces.
[7] [8] [9] Microorganisms (soil microbes) are involved in biogeochemical cycles in the soil which helps in fixing nutrients, such as nitrogen, phosphorus and sulphur in the soil (environment). [10] As a consequence of the quantitative magnitude of microbial life (calculated as 5.0 × 10 30 cells, [ 11 ] [ 12 ] ) microbes, by virtue of their ...