Search results
Results from the WOW.Com Content Network
In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...
Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713
The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.
Given a starting node, we work our way around the loop in a clockwise fashion, as illustrated by Loop 1. We add up the head losses according to the Darcy–Weisbach equation for each pipe if Q is in the same direction as our loop like Q1, and subtract the head loss if the flow is in the reverse direction, like Q4.
An explicit formula for the Bernoulli polynomials is given by = = [+ = () (+)]. That is similar to the series expression for the Hurwitz zeta function in the complex plane. Indeed, there is the relationship B n ( x ) = − n ζ ( 1 − n , x ) {\displaystyle B_{n}(x)=-n\zeta (1-n,\,x)} where ζ ( s , q ) {\displaystyle \zeta (s,\,q)} is the ...
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F 1 and F 2, known as foci, at distance 2c from each other as the locus of points P so that PF 1 ·PF 2 = c 2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ...
In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function.The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian).
The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...