Search results
Results from the WOW.Com Content Network
In any case, the context and/or unit of the gas constant should make it clear as to whether the universal or specific gas constant is being referred to. [ 10 ] In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3 , temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa ), we ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
It is common, especially in engineering and meteorological applications, to represent the specific gas constant by the symbol R. In such cases, the universal gas constant is usually given a different symbol such as ¯ or to distinguish it. In any case, the context and/or units of the gas constant should make it clear as to whether the universal ...
where P is the pressure, V is volume, n is the number of moles, R is the universal gas constant and T is the absolute temperature. The proportionality constant, now named R, is the universal gas constant with a value of 8.3144598 (kPa∙L)/(mol∙K). An equivalent formulation of this law is: =
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...
R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant , which has a fixed numerical value, but does not directly involve any physical measurement.
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.