Search results
Results from the WOW.Com Content Network
The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
This artificial intelligence -related article is a stub. You can help Wikipedia by expanding it.
1. Choose the right propagation method. Propagating plants via stem cuttings is less invasive than root division propagation and is the recommended method for winter propagation. Stem cuttings can ...
Here's how to pinpoint when you're actually in this phase of life even if your symptoms (hot flashes, mood swings, stress, dryness) are nonspecific.
Martin Riedmiller developed three algorithms, all named RPROP. Igel and Hüsken assigned names to them and added a new variant: [2] [3] RPROP+ is defined at A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm.