Search results
Results from the WOW.Com Content Network
For example, time series are usually decomposed into: , the trend component at time t, which reflects the long-term progression of the series (secular variation). A trend exists when there is a persistent increasing or decreasing direction in the data. The trend component does not have to be linear. [1]
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic process.
A time series database is a software system that is optimized for storing and serving time series through associated pairs of time(s) and value(s). [1] In some fields, time series may be called profiles, curves, traces or trends. [2] Several early time series databases are associated with industrial applications which could efficiently store ...
A moving average is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles - in this case the calculation is sometimes called a time average. The threshold between short-term and long-term depends on the application, and the parameters of the moving average will be set accordingly.
The data they used were from a gas furnace. These data are well known as the Box and Jenkins gas furnace data for benchmarking predictive models. Commandeur & Koopman (2007, §10.4) [2] argue that the Box–Jenkins approach is fundamentally problematic. The problem arises because in "the economic and social fields, real series are never ...
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.
Given a time series of data x t, the STAR model is a tool for understanding and, perhaps, predicting future values in this series, assuming that the behaviour of the series changes depending on the value of the transition variable. The transition might depend on the past values of the x series (similar to the SETAR models), or exogenous variables.