Search results
Results from the WOW.Com Content Network
For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by (+) where G is the gravitational constant, M is the mass of the astronomical body, m is the mass of the falling body, and r is the radius from the falling object to the center of the astronomical body.
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...
Richarz and Krigar-Menzel (1898) attempted a repetition of the Cavendish experiment using 100,000 kg of lead for the attracting mass. The precision of their result of 6.683(11) × 10 −11 m 3 ⋅kg −1 ⋅s −2 was, however, of the same order of magnitude as the other results at the time.
Then the attraction force vector onto a sample mass can be expressed as: = Here is the frictionless, free-fall acceleration sustained by the sampling mass under the attraction of the gravitational source. It is a vector oriented toward the field source, of magnitude measured in acceleration units.
A more recent theoretical formula for gravity as a function of latitude is the International Gravity Formula 1980 (IGF80), also based on the GRS80 ellipsoid but now using the Somigliana equation (after Carlo Somigliana (1860–1955) [6]):
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
g h is the gravitational acceleration at height h above sea level. R e is the Earth's mean radius. g 0 is the standard gravitational acceleration. The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.