Search results
Results from the WOW.Com Content Network
Two fractions a / b and c / d are equal or equivalent if and only if ad = bc.) For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the ...
The greedy algorithm for Egyptian fractions finds a solution in three or fewer terms whenever is not 1 or 17 mod 24, and the 17 mod 24 case is covered by the 2 mod 3 relation, so the only values of for which these two methods do not find expansions in three or fewer terms are those congruent to 1 mod 24.
The concept of an improper fraction is a late development, with the terminology deriving from the fact that fraction means piece, so a proper fraction must be less than 1. [10] This was explained in the 17th century textbook The Ground of Arts. [12] [13] In general, a common fraction is said to be a proper fraction if the absolute value of the ...
The topic of Egyptian fractions has also seen interest in modern number theory; for instance, the Erdős–Graham problem [9] and the Erdős–Straus conjecture [10] concern sums of unit fractions, as does the definition of Ore's harmonic numbers. [11] A pattern of spherical triangles with reflection symmetry across each triangle edge.
In case 2, the rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. This general solution of monic quadratic equations with complex coefficients is usually not very useful for obtaining rational approximations to the roots ...
Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]
The manuscript is a compendium of rules and illustrative examples. Each example is stated as a problem, the solution is described, and it is verified that the problem has been solved. The sample problems are in verse and the commentary is in prose associated with calculations.
In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...