Search results
Results from the WOW.Com Content Network
For a confidence level, there is a corresponding confidence interval about the mean , that is, the interval [, +] within which values of should fall with probability . ...
For example, in a medical study patients are recruited as a sample from a population, and their characteristics such as blood pressure may be viewed as arising from a random sample. Under certain assumptions (typically, normal distribution assumptions) there is a known ratio between the true slope, and the expected estimated slope.
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.
In 1986, Passing and Bablok extended their method introducing an equivariant extension for method transformation which also works when the slope is far from 1. [6] It may be considered a robust version of reduced major axis regression. The slope estimator is the median of the absolute values of all pairwise slopes.
In contrast to the mean absolute percentage error, SMAPE has both a lower and an upper bound. Indeed, the formula above provides a result between 0% and 200%. Indeed, the formula above provides a result between 0% and 200%.