enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...

  3. File:Comprehensive LaTeX Symbol List.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Comprehensive_LaTeX...

    Deutsch: Dieses Dokument listet 20323 Symbole und die dazugehörigen LaTeX-Befehle auf. Manche Symbole sind in jedem LaTeX-2ε-System verfügbar; andere benötigen zusätzliche Schriftarten oder Pakete, die nicht notwendig in jeder Distribution mitgeliefert werden und daher selbst installiert werden müssen.

  4. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  5. Definite quadratic form - Wikipedia

    en.wikipedia.org/wiki/Definite_quadratic_form

    According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.

  6. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    L is positive-semidefinite (that is for all ). This can be seen from the fact that the Laplacian is symmetric and diagonally dominant. L is an M-matrix (its off-diagonal entries are nonpositive, yet the real parts of its eigenvalues are nonnegative). Every row sum and column sum of L is zero. Indeed, in the sum, the degree of the vertex is ...

  8. Kac–Moody algebra - Wikipedia

    en.wikipedia.org/wiki/Kac–Moody_algebra

    A positive semidefinite matrix S gives rise to an infinite-dimensional Kac–Moody algebra of affine type, or an affine Lie algebra. An indefinite matrix S gives rise to a Kac–Moody algebra of indefinite type. Since the diagonal entries of C and S are positive, S cannot be negative definite or negative semidefinite.

  9. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint , in which case similar definitions apply, but we discuss ...