Search results
Results from the WOW.Com Content Network
In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;
Deutsch: Dieses Dokument listet 20323 Symbole und die dazugehörigen LaTeX-Befehle auf. Manche Symbole sind in jedem LaTeX-2ε-System verfügbar; andere benötigen zusätzliche Schriftarten oder Pakete, die nicht notwendig in jeder Distribution mitgeliefert werden und daher selbst installiert werden müssen.
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
The Hessian matrix is commonly used for expressing image processing operators in image processing and computer vision (see the Laplacian of Gaussian (LoG) blob detector, the determinant of Hessian (DoH) blob detector and scale space). It can be used in normal mode analysis to calculate the different molecular frequencies in infrared ...
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
If the quadratic form f yields only non-negative values (positive or zero), the symmetric matrix is called positive-semidefinite (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and ...
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form =, where is a unitary matrix and is a positive semi-definite Hermitian matrix (is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size.
The trace distance is defined as half of the trace norm of the difference of the matrices: (,):= ‖ ‖ = [() † ()], where ‖ ‖ [†] is the trace norm of , and is the unique positive semidefinite such that = (which is always defined for positive semidefinite ).