Search results
Results from the WOW.Com Content Network
An American Rotary Phase Converter with a Transformer. A phase converter is a device that converts electric power provided as single phase to multiple phase or vice versa. The majority of phase converters are used to produce three-phase electric power from a single-phase source, thus allowing the operation of three-phase equipment at a site that only has single-phase electrical service.
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
Some can convert single-phase power to three-phase power and vice versa. Variations can input or output DC power to reduce the number of conversions, for greater end-to-end efficiency. A Modular Solid-state transformer consists of several high-frequency transformers [1] and is similar to a Multi-level converter. As a complex electronic circuit ...
[1] [2] A single line in the diagram typically corresponds to more than one physical conductor: in a direct current system the line includes the supply and return paths, in a three-phase system the line represents all three phases (the conductors are both supply and return due to the nature of the alternating current circuits). [1]
Wiring schematic for a simplified bipolar-field Gramme-ring single-phase–to–direct-current rotary converter. (In actual use, the converter is drum-wound and uses a multipolar field.) [2] Wiring schematic for a simplified two-phase–to–direct-current rotary converter, with the second phase connected at right angles to the first [3] Wiring schematic for a simplified three-phase–to ...
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
An example would be a distribution transformer with a delta primary, running on three 11 kV phases with no neutral or earth required, and a star (or wye) secondary providing a 3-phase supply at 415 V, with the domestic voltage of 240 available between each phase and the earthed (grounded) neutral point.
Three-phase induction motors are very sensitive to voltage imbalances. The quality of three-phase power generated by such a phase converter depends upon a number of factors including: Power capacity of the phase converter (idler horsepower rating). Power level demands of the equipment being supplied.