enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the NavierStokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  4. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    The NavierStokes equations form a vector continuity equation describing the conservation of linear momentum. If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [ 3 ] ∇ ⋅ u = 0 , {\displaystyle \nabla \cdot \mathbf {u} =0,} which means that the ...

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    NavierStokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...

  7. Geostrophic current - Wikipedia

    en.wikipedia.org/wiki/Geostrophic_current

    The geostrophic equations are a simplified form of the NavierStokes equations in a rotating reference frame. In particular, it is assumed that there is no acceleration (steady-state), that there is no viscosity, and that the pressure is hydrostatic.

  8. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    () then provides the governing equation for pressure computation. The idea of pressure-correction also exists in the case of variable density and high Mach numbers, although in this case there is a real physical meaning behind the coupling of dynamic pressure and velocity as arising from the continuity equation

  9. Astrophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_fluid_dynamics

    Many regular fluid dynamics equations are used in astrophysical fluid dynamics. Some of these equations are: [2] Continuity equations; The NavierStokes equations; Euler's equations; Conservation of mass. The continuity equation is an extension of conservation of mass to fluid flow.