Search results
Results from the WOW.Com Content Network
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
The term "variance structure" refers to the algebraic form of the covariance matrix between outcomes, Y, in the sample. Examples of variance structure specifications include independence, exchangeable, autoregressive, stationary m-dependent, and unstructured.
In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]
In econometrics, the method of simulated moments (MSM) (also called simulated method of moments [1]) is a structural estimation technique introduced by Daniel McFadden. [2] It extends the generalized method of moments to cases where theoretical moment functions cannot be evaluated directly, such as when moment functions involve high-dimensional integrals.
If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:Formula One formatting and function templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Formula One formatting and function templates]]</noinclude>
GMM may refer to: Generalized method of moments, an econometric method; GMM Grammy, a Thai entertainment company; Gaussian mixture model, a statistical probabilistic model; Google Map Maker, a public cartography project; GMM, IATA code for Gamboma Airport in the Republic of the Congo
Lars Peter Hansen re-worked through the derivations and showed that it can be extended to general non-linear GMM in a time series context. [ 3 ] The Sargan test is based on the assumption that model parameters are identified via a priori restrictions on the coefficients, and tests the validity of over-identifying restrictions.