enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    Kingman's formula gives an approximation for the mean waiting time in a G/G/1 queue. [6] Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution which can be solved using the Wiener–Hopf method. [7]

  3. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]

  4. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  5. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.

  6. Kingman's formula - Wikipedia

    en.wikipedia.org/wiki/Kingman's_formula

    Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.

  7. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).

  8. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    The matrix geometric method and matrix analytic methods have allowed queues with phase-type distributed inter-arrival and service time distributions to be considered. [18] Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing. [19]

  9. Little's law - Wikipedia

    en.wikipedia.org/wiki/Little's_law

    In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.