Search results
Results from the WOW.Com Content Network
The notion of irreducible fraction generalizes to the field of fractions of any unique factorization domain: any element of such a field can be written as a fraction in which denominator and numerator are coprime, by dividing both by their greatest common divisor. [7] This applies notably to rational expressions over a field. The irreducible ...
A 3-manifold is P²-irreducible if it is irreducible and contains no 2-sided (real projective plane). An irreducible fraction (or fraction in lowest terms) is a vulgar fraction in which the numerator and denominator are smaller than those in any other equivalent fraction.
The Ford circle associated with the fraction / is denoted by [/] or [,]. There is a Ford circle associated with every rational number . In addition, the line y = 1 {\displaystyle y=1} is counted as a Ford circle – it can be thought of as the Ford circle associated with infinity , which is the case p = 1 , q = 0. {\displaystyle p=1,q=0.}
In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5 / 6 = 1 / 2 + 1 / 3 .
When the coefficients are unspecified, or belong to a field where division does not result into fractions (such as ,, or a finite field), this reduction to monic equations may provide simplification. On the other hand, as shown by the previous example, when the coefficients are explicit integers, the associated monic polynomial is generally ...
Another well-known example is the polynomial X 2 − X − 1, whose roots are the golden ratio φ = (1 + √5)/2 and its conjugate (1 − √5)/2 showing that it is reducible over the field Q[√5], although it is irreducible over the non-UFD Z[√5] which has Q[√5] as field of fractions.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
If the square root of D is rational, then it can be written as the irreducible fraction p/q, so that q is the smallest possible denominator, and hence the smallest number for which q √ D is also an integer. Then: (√ D − n)q √ D = qD − nq √ D. which is thus also an integer. But 0 < (√ D − n) < 1 so (√ D − n)q < q.