enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A self-intersecting quadrilateral is called variously a cross-quadrilateral, crossed quadrilateral, butterfly quadrilateral or bow-tie quadrilateral. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex , all on the left or all on the right as the figure is traced out) add up to 720°.

  3. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The rhombus has a square as a special case, and is a special case of a kite and parallelogram.. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length.

  4. Pitot theorem - Wikipedia

    en.wikipedia.org/wiki/Pitot_theorem

    A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]

  5. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Quadrilaterals can be classified hierarchically, meaning that some classes of quadrilaterals include other classes, or partitionally, meaning that each quadrilateral is in only one class. Classified hierarchically, kites include the rhombi (quadrilaterals with four equal sides) and squares.

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [4] According to the Pitot theorem, the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral:

  7. Right kite - Wikipedia

    en.wikipedia.org/wiki/Right_kite

    In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...

  8. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...

  9. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.