Search results
Results from the WOW.Com Content Network
The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...
Refractive index also varies with wavelength of the light as given by Cauchy's equation. The most general form of this equation is = + + +, where n is the refractive index, λ is the wavelength, and A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.
Wolfgang Sellmeier was a German theoretical physicist who made major contributions to the understanding of the interactions between light and matter. [1] In 1872 he published his seminal work Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. [2]
The matrix above can be used with the molar refractivity equation and other data to produce density data for crystallography. Each polarizability measurement along with the refractive index associated with its direction will yield a direction specific density that can be used to develop an accurate three dimensional assessment of molecular ...
This equation is valid between 0.21 and 3.71 μm and at 20 °C. [17] Its validity was confirmed for wavelengths up to 6.7 μm. [ 4 ] Experimental data for the real (refractive index) and imaginary (absorption index) parts of the complex refractive index of fused quartz reported in the literature over the spectral range from 30 nm to 1000 μm ...
The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz , who published it in 1869, and the Dutch ...