enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    It then follows that the eigenvectors of A form a basis if and only if A is diagonalizable. A matrix that is not diagonalizable is said to be defective. For defective matrices, the notion of eigenvectors generalizes to generalized eigenvectors and the diagonal matrix of eigenvalues generalizes to the Jordan normal form.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Choi's theorem on completely positive maps - Wikipedia

    en.wikipedia.org/wiki/Choi's_theorem_on...

    where λ i are real numbers, the eigenvalues of C Φ, and each V i corresponds to an eigenvector of C Φ. Unlike the completely positive case, C Φ may fail to be positive. Since Hermitian matrices do not admit factorizations of the form B*B in general, the Kraus representation is no longer possible for a given Φ.

  6. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...

  7. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  8. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    If we use the third choice of domain (with periodic boundary conditions), we can find an orthonormal basis of eigenvectors for A, the functions ():=. Thus, in this case finding a domain such that A is self-adjoint is a compromise: the domain has to be small enough so that A is symmetric, but large enough so that D ( A ∗ ) = D ( A ...

  9. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix. Define the linear map T : V → V pointwise by Tx = Mx, where on the right-hand side x is interpreted as a column vector and M acts on x by matrix multiplication. We now say that x ∈ V is an eigenvector of M if x is an eigenvector of T.