Search results
Results from the WOW.Com Content Network
From a permutations perspective, let the event A be the probability of finding a group of 23 people without any repeated birthdays. Where the event B is the probability of finding a group of 23 people with at least two people sharing same birthday, P(B) = 1 − P(A).
The name is based on the birthday paradox. Choose m birthdays in a year of n days. List the spacings between the birthdays. If j is the number of values that occur more than once in that list, then j is asymptotically Poisson-distributed with mean m 3 / (4n).
To effectively convert a Lehmer code d n, d n−1, ..., d 2, d 1 into a permutation of an ordered set S, one can start with a list of the elements of S in increasing order, and for i increasing from 1 to n set σ i to the element in the list that is preceded by d n+1−i other ones, and remove that element from the list.
Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...
This list may not reflect recent changes. Permutation * List of permutation topics; 0–9. 15 puzzle; 100 prisoners problem; A. Alternating permutation ...
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.