Search results
Results from the WOW.Com Content Network
A schematic nuclear fission chain reaction. 1. A uranium-235 atom absorbs a neutron and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2. One of those neutrons is absorbed by an atom of uranium-238 and does not continue the reaction. Another neutron is simply lost and does not collide with ...
The first paragraph states the intention of the Los Alamos Laboratory during World War II: [1] The object of the project is to produce a practical military weapon in the form of a bomb in which the energy is released by a fast neutron chain reaction in one or more of the materials known to show nuclear fission.
To be a useful fuel for nuclear fission chain reactions, the material must: Be in the region of the binding energy curve where a fission chain reaction is possible (i.e., above radium) Have a high probability of fission on neutron capture; Release more than one neutron on average per neutron capture.
[1] Nuclear fission was discovered in December 1938 by chemists Otto Hahn and Fritz Strassmann and physicists Lise Meitner and Otto Robert Frisch. Fission is a nuclear reaction or radioactive decay process in which the nucleus of an atom splits into two or more smaller, lighter nuclei
Nuclear fission is a process in which the nuclei of atoms are split apart. Among the various particles released in this process are high-energy neutrons with energies spread over the neutron spectrum. Those neutrons may cause other nuclei to undergo fission, leading to the possibility of a chain reaction. However, the neutrons can only cause ...
In nuclear fusion, the nuclei of light elements are fused to create a heavier element.. To review this work and the general theory of fission reactions, Oppenheimer and Fermi convened meetings at the University of Chicago in June and at the University of California in Berkeley, in July with theoretical physicists Hans Bethe, John Van Vleck, Edward Teller, Emil Konopinski, Robert Serber, Stan ...
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes (e.g., uranium-235 ...
Frisch and Peierls then considered the speed of a uranium fission chain reaction, exponential in nature, where "τ is the time required for the neutron density to multiply by a factor e." The available data was very approximate, but their central point – that a bomb was possible using fast (~2 MeV) neutrons – remains.