Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version ... is a class into which an instance is classified ... When the learner knows the conditional probability, then one solution is
Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem; among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]
The number of claims N is a random variable, which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc..For the "Panjer recursion", the probability distribution of N has to be a member of the Panjer class, otherwise known as the (a,b,0) class of distributions.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
The efficiency of accessing a key depends on the length of its list. If we use a single hash function which selects locations with uniform probability, with high probability the longest chain has ( ) keys. A possible improvement is to use two hash functions, and put each new key in the shorter of the two lists.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
This theorem follows from the fact that if X n converges in distribution to X and Y n converges in probability to a constant c, then the joint vector (X n, Y n) converges in distribution to (X, c) . Next we apply the continuous mapping theorem , recognizing the functions g ( x , y ) = x + y , g ( x , y ) = xy , and g ( x , y ) = x y −1 are ...