enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Metamathematics - Wikipedia

    en.wikipedia.org/wiki/Metamathematics

    Before its discovery there was just one geometry and mathematics; the idea that another geometry existed was considered improbable. When Gauss discovered hyperbolic geometry, it is said that he did not publish anything about it out of fear of the "uproar of the Boeotians ", which would ruin his status as princeps mathematicorum (Latin, "the ...

  4. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons

  5. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Textbooks on complex functions often mention two common models of hyperbolic geometry: the Poincaré half-plane model where the absolute is the real line on the complex plane, and the Poincaré disk model where the absolute is the unit circle in the complex plane. Hyperbolic motions can also be described on the hyperboloid model of hyperbolic ...

  6. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  7. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane.

  8. Hjelmslev transformation - Wikipedia

    en.wikipedia.org/wiki/Hjelmslev_transformation

    The Hjelmslev transformation is a method of mapping an infinite line into a finite one in hyperbolic geometry. Lobachevsky observes, using a combination of his 16th and 23rd theorems, that it is a fundamental characteristic of hyperbolic geometry that there must exist a distinct angle of parallelism for any given line length. [2]

  9. Hilbert metric - Wikipedia

    en.wikipedia.org/wiki/Hilbert_metric

    It was introduced by David Hilbert as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry, where the convex set is the n-dimensional open unit ball. Hilbert's metric has been applied to Perron–Frobenius theory and to constructing Gromov hyperbolic spaces.