Search results
Results from the WOW.Com Content Network
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.
If any exponent is allowed to be negative, the shape extends to infinity. Such shapes are sometimes called super-hyperboloids. The basic shape above spans from -1 to +1 along each coordinate axis. The general superquadric is the result of scaling this basic shape by different amounts A, B, C along each axis. Its general equation is
Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident ...
Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.
Shape descriptors can be classified by their invariance with respect to the transformations allowed in the associated shape definition. Many descriptors are invariant with respect to congruency, meaning that congruent shapes (shapes that could be translated, rotated and mirrored) will have the same descriptor (for example moment or spherical harmonic based descriptors or Procrustes analysis ...
An encapsulation of surface curvature can be found in the shape operator, S, which is a self-adjoint linear operator from the tangent plane to itself (specifically, the differential of the Gauss map). For a surface with tangent vectors X and normal N, the shape operator can be expressed compactly in index summation notation as