Search results
Results from the WOW.Com Content Network
Fluid Phase Equilibria is a peer-reviewed scientific journal on physical chemistry and thermodynamics that is published by Elsevier.The articles deal with experimental, theoretical and applied research related to properties of pure components and mixtures, especially phase equilibria, caloric and transport properties of fluid and solid phases.
Today the UNIQUAC model is frequently applied in the description of phase equilibria (i.e. liquid–solid, liquid–liquid or liquid–vapor equilibrium). The UNIQUAC model also serves as the basis of the development of the group contribution method UNIFAC, [3] where molecules are subdivided into functional groups. In fact, UNIQUAC is equal to ...
PC-SAFT (perturbed chain SAFT) is an equation of state that is based on statistical associating fluid theory (SAFT). Like other SAFT equations of state, it makes use of chain and association terms developed by Chapman, et al from perturbation theory. [1]
Statistical associating fluid theory (SAFT) [1] [2] is a chemical theory, based on perturbation theory, that uses statistical thermodynamics to explain how complex fluids and fluid mixtures form associations through hydrogen bonds. [3] Widely used in industry and academia, it has become a standard approach for describing complex mixtures.
ΔH for a phase transition is a weak function of temperature. In some texts, the heats of phase transitions are called latent heats (for example, latent heat of fusion). Molar enthalpy of zinc above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The ΔH°m of zinc is 7323 J/mol, and the ΔH°v is 115 ...
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
The concentration of the anesthetic in blood includes the portion that is undissolved in plasma and the portion that is dissolved (bound to plasma proteins). The more soluble the inhaled anesthetic is in blood compared to in air, the more it binds to plasma proteins in the blood and the higher the blood–gas partition coefficient.
For example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. [5] Partition coefficients can also be defined when one of the phases is solid , for instance, when one phase is a molten metal and the second is a solid metal, [ 6 ] or when both phases are solids. [ 7 ]