Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets. The intersection of two sets and , denoted by , [3] is the set of all objects that are members of both the sets and .
Python has built-in set and frozenset types since 2.4, and since Python 3.0 and 2.7, supports non-empty set literals using a curly-bracket syntax, e.g.: {x, y, z}; empty sets must be created using set(), because Python uses {} to represent the empty dictionary.
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
The time to perform a single refinement operation in this way is O(|X|), independent of the number of elements in the family of sets and also independent of the total number of sets in the data structure. Thus, the time for a sequence of refinements is proportional to the total size of the sets given to the algorithm in each refinement step.
Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method (also called the projections onto convex sets method). In its simplest form, the method finds a point in the intersection of two convex sets by iteratively projecting onto each of the convex set; it ...
A nested set collection or nested set family is a collection of sets that consists of chains of subsets forming a hierarchical structure, like Russian dolls. It is used as reference concept in scientific hierarchy definitions, and many technical approaches, like the tree in computational data structures or nested set model of relational databases .
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".