Search results
Results from the WOW.Com Content Network
A computer-simulated ring resonator depicting continuous wave input at resonance. An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. (These can be, but are not limited to being, waveguides.)
Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface.Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.
The exhaust pipes in automobile exhaust systems are designed as acoustic resonators that work with the muffler to reduce noise, by making sound waves "cancel each other out". [7] The "exhaust note" is an important feature for some vehicle owners, so both the original manufacturers and the after-market suppliers use the resonator to enhance the ...
Sound (or lattice vibration) can be described by a phonon just as light can be considered as photons, and therefore one can state that SASER is the acoustic analogue of the laser. [citation needed] In a SASER device, a source (e.g., an electric field as a pump) produces sound waves (lattice vibrations, phonons) that travel through an active medium.
An optical microcavity or microresonator is a structure formed by reflecting faces on the two sides of a spacer layer or optical medium, or by wrapping a waveguide in a circular fashion to form a ring. The former type is a standing wave cavity, and the latter is a traveling wave cavity.
A split-ring resonator consists of an inner square with a split on one side embedded in an outer square with a split on the other side. The split-ring resonators are on the front and right surfaces of the square grid and the single vertical wires are on the back and left surfaces. [8] [23]
An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers , surrounding the gain medium and providing feedback of the laser light.
Coupled mode theory (CMT) is a perturbational approach for analyzing the coupling of vibrational systems (mechanical, optical, electrical, etc.) in space or in time. Coupled mode theory allows a wide range of devices and systems to be modeled as one or more coupled resonators.