enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.

  3. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  4. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    By the beginning of the 20th century, Newton's law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton's model, gravity is the result of an attractive force between massive objects.

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    It is also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant, [a] denoted by the capital letter G. In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their ...

  6. Specific force - Wikipedia

    en.wikipedia.org/wiki/Specific_force

    It can also be called mass-specific weight (weight per unit mass), as the weight of an object is equal to the magnitude of the gravity force acting on it. The g-force is an instance of specific force measured in units of the standard gravity (g) instead of m/s², i.e., in multiples of g (e.g., "3 g").

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In Einstein's theory of general relativity, gravitation is an attribute of curved spacetime instead of being due to a force propagated between bodies. In Einstein's theory, masses distort spacetime in their vicinity, and other particles move in trajectories determined by the geometry of spacetime. The gravitational force is a fictitious force.

  8. Force field (physics) - Wikipedia

    en.wikipedia.org/wiki/Force_field_(physics)

    In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field F {\displaystyle \mathbf {F} } , where F ( r ) {\displaystyle \mathbf {F} (\mathbf {r} )} is the force that a particle would feel if it were at the position r ...

  9. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    If there are no other external forces than gravity, the g-force in a rocket is the thrust per unit mass. Its magnitude is equal to the thrust-to-weight ratio times g, and to the consumption of delta-v per unit time. In the case of a shock, e.g., a collision, the g-force can be very large during a short time.