Search results
Results from the WOW.Com Content Network
Some programming languages provide a built-in (primitive) rational data type to represent rational numbers like 1/3 and −11/17 without rounding, and to do arithmetic on them. Examples are the ratio type of Common Lisp, and analogous types provided by most languages for algebraic computation, such as Mathematica and Maple.
These functions can be used to control a variety of settings that affect floating-point computations, for example, the rounding mode, on what conditions exceptions occur, when numbers are flushed to zero, etc. The floating-point environment functions and types are defined in <fenv.h> header (<cfenv> in C++).
Many examples of use, including linear solvers posit-javascript. A*STAR. JavaScript widget Convert decimal to posit 6, 8, 16, 32; generate tables 2–17 with es 1–4. N/A N/A; interactive widget Fully tested Table generator and conversion Universal. Stillwater Supercomputing, Inc C++ template library C library Python wrapper Golang library
The following is an incomplete list of some arbitrary-precision arithmetic libraries for C++. GMP [1] [nb 1] MPFR [3] MPIR [4] TTMath [5] Arbitrary Precision Math C++ Package [6] Class Library for Numbers; Number Theory Library; Apfloat [7] C++ Big Integer Library [8] MAPM [9] ARPREC [10] InfInt [11] Universal Numbers [12] mp++ [13] num7 [14]
The C language provides basic arithmetic types, such as integer and real number types, and syntax to build array and compound types. Headers for the C standard library , to be used via include directives , contain definitions of support types, that have additional properties, such as providing storage with an exact size, independent of the ...
AutoCalcs - allow users to Search, Create, Store and Share multi-step calculations using explicit expressions featuring automated Unit Conversion. It is a platform that allows users to go beyond unit conversion, which in turn brings in significantly improved efficiency. A lot of sample calculations can be found at AutoCalcs Docs site.
The following is a declaration of the concept "equality_comparable" from the <concepts> header of a C++20 standard library. This concept is satisfied by any type T such that for lvalues a and b of type T, the expressions a==b and a!=b as well as the reverse b==a and b!=a compile, and their results are convertible to a type that satisfies the concept "boolean-testable":
The increment operator increases, and the decrement operator decreases, the value of its operand by 1. The operand must have an arithmetic or pointer data type, and must refer to a modifiable data object. Pointers values are increased (or decreased) by an amount that makes them point to the next (or previous) element adjacent in memory.