Search results
Results from the WOW.Com Content Network
Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure. For example, quotient set, quotient group, quotient category, etc. 3. In number theory and field theory, / denotes a field extension, where F is an extension field of the field E. 4.
The regular map {8,3} 2,0 can be seen as a 6-coloring of the {8,3} hyperbolic tiling. Within the regular map, octagons of the same color are considered the same face shown in multiple locations. Within the regular map, octagons of the same color are considered the same face shown in multiple locations.
The first four partial sums of the series 1 + 2 + 3 + 4 + ⋯.The parabola is their smoothed asymptote; its y-intercept is −1/12. [1]The infinite series whose terms ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...
In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though Knuth's up arrow notation ↑ ↑ {\displaystyle \uparrow \uparrow } and the left-exponent x b {\displaystyle {}^{x}b} are common.
It is to be regretted that this first comprehensive and thorough-going presentation of a mathematical logic and the derivation of mathematics from it [is] so greatly lacking in formal precision in the foundations (contained in 1– 21 of Principia [i.e., sections 1– 5 (propositional logic), 8–14 (predicate logic with identity/equality), 20 ...
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.