Search results
Results from the WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
The highest (maximum) value of the photo-current is called saturation current. The value of retarding potential at which photo-current becomes zero is called cut-off voltage or stopping potential for the given frequency of the incident ray.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
When no current is observed through the tube, the negative voltage has reached the value that is high enough to slow down and stop the most energetic photoelectrons of kinetic energy K max. This value of the retarding voltage is called the stopping potential or cut off potential V o . [ 13 ]
The points where the characteristic curve and the load line intersect are the possible operating point(s) of the circuit; at these points the current and voltage parameters of both parts of the circuit match. [1] The example at right shows how a load line is used to determine the current and voltage in a simple diode circuit.
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
WASHINGTON (Reuters) -The Justice Department late on Wednesday asked a U.S. appeals court to reject an emergency bid by TikTok to temporarily block a law that would require its Chinese parent ...
As for the second, the difference between the quasi-Fermi levels at the junction, he says that we can estimate the current flowing through the diode from this difference. He points out that the current at the p terminal is all holes, whereas at the n terminal it is all electrons, and the sum of these two is the constant total current.