enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer...

    This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer. For the rest of this article, we will assume the input to the divide-and-conquer algorithm is an real symmetric tridiagonal matrix . The algorithm can be modified for Hermitian matrices.

  4. Hilbert matrix - Wikipedia

    en.wikipedia.org/wiki/Hilbert_matrix

    The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.

  6. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    The idea of the Arnoldi iteration as an eigenvalue algorithm is to compute the eigenvalues in the Krylov subspace. The eigenvalues of H n are called the Ritz eigenvalues. Since H n is a Hessenberg matrix of modest size, its eigenvalues can be computed efficiently, for instance with the QR algorithm, or somewhat related, Francis' algorithm. Also ...

  7. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.

  8. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  9. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.