Search results
Results from the WOW.Com Content Network
The Shockley equation is a constant current (steady state) relationship, and thus doesn't account for the diode's transient response, which includes the influence of its internal junction and diffusion capacitance and reverse recovery time.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p–n junction in reverse bias.
From the Shockley ideal diode equation given above, it might appear that the voltage has a positive temperature coefficient (at a constant current), but usually the variation of the reverse saturation current term is more significant than the variation in the thermal voltage term.
The Shockley diode (named after physicist William Shockley) is a four-layer semiconductor diode, which was one of the first semiconductor devices invented. It is a PNPN diode with alternating layers of P-type and N-type material.
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
NEW YORK/SINGAPORE/PARIS (Reuters) -Crypto markets crept up on Friday, still holding below recent highs even after President Donald Trump ordered a new working group to draw up crypto regulations ...
The Shockley diode equation gives the current–voltage ... is the diode's reverse saturation current and ... The resulting curve is a piecewise linear ...