Search results
Results from the WOW.Com Content Network
The chemical complexity of coffee is emerging, especially due to observed physiological effects which cannot be related only to the presence of caffeine. Moreover, coffee contains an exceptionally substantial amount of antioxidants such as chlorogenic acids, hydroxycinnamic acids, caffeine and Maillard reaction products, such as melanoidins. [3]
Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol, will react without a catalyst, but for typical benzene derivatives with less reactive substrates, a Lewis acid is required as a catalyst.
Aside from these effects, there is often also a steric effect, due to increased steric hindrance at the ortho position but not the para position, leading to a larger amount of the para product. The effect is illustrated for electrophilic aromatic substitutions with alkyl substituents of differing steric demand for electrophilic aromatic ...
The health effects of coffee include various possible health benefits and health risks. [ 1 ] A 2017 umbrella review of meta-analyses found that drinking coffee is generally safe within usual levels of intake and is more likely to improve health outcomes than to cause harm at doses of 3 or 4 cups of coffee daily.
The overall reaction mechanism, denoted by the Hughes–Ingold mechanistic symbol S E Ar, [3] begins with the aromatic ring attacking the electrophile E + (2a). This step leads to the formation of a positively charged and delocalized cyclohexadienyl cation, also known as an arenium ion, Wheland intermediate, or arene σ-complex (2b).
Paraxanthine, also known as 1,7-dimethylxanthine, is an isomer of theophylline and theobromine, two well-known stimulants found in coffee, tea, and chocolate mainly in the form of caffeine. It is a member of the xanthine family of alkaloids , which includes theophylline, theobromine and caffeine .
A chlorophenol is any organochloride of phenol that contains one or more covalently bonded chlorine atoms. There are five basic types of chlorophenols (mono- to pentachlorophenol) and 19 different chlorophenols in total when positional isomerism is taken into account. Chlorophenols are produced by electrophilic halogenation of phenol with ...
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1] This kind of conversion is in fact so common that a comprehensive overview is challenging.