Search results
Results from the WOW.Com Content Network
Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. [1]
The users may have feedback, which results in additional analysis. As such, much of the analytical cycle is iterative. [13] When determining how to communicate the results, the analyst may consider implementing a variety of data visualization techniques to help communicate the message more clearly and efficiently to the audience. [45]
The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv. [3]
Legendre and Gauss both applied the method to the problem of determining, from astronomical observations, the orbits of bodies about the Sun (mostly comets, but also later the then newly discovered minor planets). Gauss published a further development of the theory of least squares in 1821, [8] including a version of the Gauss–Markov theorem.
Even when statistical techniques are correctly applied, the results can be difficult to interpret for those lacking expertise. The statistical significance of a trend in the data—which measures the extent to which a trend could be caused by random variation in the sample—may or may not agree with an intuitive sense of its significance.
To interpret the results, one proceeds either by post-multiplying the primary factor pattern matrix by the higher-order factor pattern matrices (Gorsuch, 1983) and perhaps applying a Varimax rotation to the result (Thompson, 1990) or by using a Schmid-Leiman solution (SLS, Schmid & Leiman, 1957, also known as Schmid-Leiman transformation) which ...
Significance testing is used as a substitute for the traditional comparison of predicted value and experimental result at the core of the scientific method. When theory is only capable of predicting the sign of a relationship, a directional (one-sided) hypothesis test can be configured so that only a statistically significant result supports ...
The interpretation of the β j parameter estimates is as the additive effect on the log of the odds for a unit change in the j the explanatory variable. In the case of a dichotomous explanatory variable, for instance, gender e β {\displaystyle e^{\beta }} is the estimate of the odds of having the outcome for, say, males compared with females.