enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.

  3. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  4. Odds ratio - Wikipedia

    en.wikipedia.org/wiki/Odds_ratio

    The log odds ratio shown here is based on the odds for the event occurring in group B relative to the odds for the event occurring in group A. Thus, when the probability of X occurring in group B is greater than the probability of X occurring in group A, the odds ratio is greater than 1, and the log odds ratio is greater than 0.

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The corresponding probability of the value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value "1"), hence the labeling; [2] the function that converts log-odds to probability is the logistic function, hence the name.

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The log-Laplace distribution; The log-logistic distribution; The log-metalog distribution, which is highly shape-flexile, has simple closed forms, can be parameterized with data using linear least squares, and subsumes the log-logistic distribution as a special case. The log-normal distribution, describing variables which can be modelled as the ...

  8. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then

  9. Binary regression - Wikipedia

    en.wikipedia.org/wiki/Binary_regression

    The simplest direct probabilistic model is the logit model, which models the log-odds as a linear function of the explanatory variable or variables. The logit model is "simplest" in the sense of generalized linear models (GLIM): the log-odds are the natural parameter for the exponential family of the Bernoulli distribution, and thus it is the simplest to use for computations.