Search results
Results from the WOW.Com Content Network
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
The method is also known as nearest neighbour clustering. The result of the clustering can be visualized as a dendrogram, which shows the sequence in which clusters were merged and the distance at which each merge took place. [3] Mathematically, the linkage function – the distance D(X,Y) between clusters X and Y – is described by the expression
UPGMA (unweighted pair group method with arithmetic mean) is a simple agglomerative (bottom-up) hierarchical clustering method. It also has a weighted variant, WPGMA, and they are generally attributed to Sokal and Michener.
Hierarchical clustering is one method for finding community structures in a network. The technique arranges the network into a hierarchy of groups according to a specified weight function. The data can then be represented in a tree structure known as a dendrogram.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
WPGMA (Weighted Pair Group Method with Arithmetic Mean) is a simple agglomerative (bottom-up) hierarchical clustering method, generally attributed to Sokal and Michener. [ 1 ] The WPGMA method is similar to its unweighted variant, the UPGMA method.
To avoid the problems with non-uniform sized or shaped clusters, CURE employs a hierarchical clustering algorithm that adopts a middle ground between the centroid based and all point extremes. In CURE, a constant number c of well scattered points of a cluster are chosen and they are shrunk towards the centroid of the cluster by a fraction α.
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.