enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  3. Dendrogram - Wikipedia

    en.wikipedia.org/wiki/Dendrogram

    For a clustering example, suppose that five taxa (to ) have been clustered by UPGMA based on a matrix of genetic distances.The hierarchical clustering dendrogram would show a column of five nodes representing the initial data (here individual taxa), and the remaining nodes represent the clusters to which the data belong, with the arrows representing the distance (dissimilarity).

  4. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged).

  5. Hierarchical clustering of networks - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering_of...

    Hierarchical clustering is one method for finding community structures in a network. The technique arranges the network into a hierarchy of groups according to a specified weight function. The data can then be represented in a tree structure known as a dendrogram.

  6. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Ideas from density-based clustering methods (in particular the DBSCAN/OPTICS family of algorithms) have been adapted to subspace clustering (HiSC, [25] hierarchical subspace clustering and DiSH [26]) and correlation clustering (HiCO, [27] hierarchical correlation clustering, 4C [28] using "correlation connectivity" and ERiC [29] exploring ...

  7. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  8. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering.

  9. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    WPGMA (Weighted Pair Group Method with Arithmetic Mean) is a simple agglomerative (bottom-up) hierarchical clustering method, generally attributed to Sokal and Michener. [ 1 ] The WPGMA method is similar to its unweighted variant, the UPGMA method.